H-contact unit tangent sphere bundles of Riemannian manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New structures on the tangent bundles and tangent sphere bundles

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M). W...

متن کامل

Local Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure

We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...

متن کامل

Tangent bundles to sub-Riemannian groups

1 1 INTRODUCTION 2 1 Introduction Classical calculus is a basic tool in analysis. We use it so often that we forget that its construction needed considerable time and effort. Especially in the last decade, the progresses made in the field of analysis in metric spaces make us reconsider this calculus. Along this line of thought, all started with the definition of Pansu derivative [24] and its ve...

متن کامل

When Are the Tangent Sphere Bundles of a Riemannian Manifold Reducible?

We determine all Riemannian manifolds for which the tangent sphere bundles, equipped with the Sasaki metric, are local or global Riemannian product manifolds.

متن کامل

Complex manifolds with ample tangent bundles ∗ Renyi

Let M be a close complex manifold and T M its holomorphic tangent bundle. We prove that if the global holomorphic sections of tangent bundle generate each fibre, then M is a complex homogeneous manifold. It implies that every irreducible close Kähler manifold with ample tangent bundle is isomorphic to the projective space. This provides an alternative proof of Hartshore's conjecture in algebrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2016

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2016.09.002